Type: EG1116/D EG9116C

GaAs MONOLITHIC POWER AMPLIFIER 21.5 GHz TO 26.5 GHz

The EG1116 is a GaAs monolithic high-power amplifier that operates from 21.5 GHz -26.0 GHz. The amplifier is a one-stage device with two 1200um single-gate FET. It provides 7.0 dB typical small-signal gain and 29.5 dBm output power at 1-dB gain compression. The EG1116 is designed for use in Digital Multipoint as well as for Point to Point Radio Systems.

Bond pad and backside metallization is gold plated for compatibility with eutetic alloy attachment methods as well as the thermocompression and thermosonic wire bonding processes. Ground is provided to the circuitry through vias to the backside metallization.

The MMIC is fabricated using a AlGaAs/GaAs 0.25 um T-gate PHEMT-Technology (Pseudomorphic High Electron Mobility Transistors) on an 100um thick GaAs substrate. For better DC & RF uniformity an "etch stop layer technique" for 1st and 2nd recess is applied.

₇5

Chip Layout: Reference Planes/Ports for RF-Autoprobe

Chip Size:(2.946mm \pm 50 μ m)x (2.489mm \pm 50 μ m) X (0.1mm \pm 12 μ m) Port 1 RF Input Port 2 RF Output

1 Mounting, assembly and packaging

1.1 Semiconductor material: GaAs
1.2 Bondpad metallization: Au
1.3 Backside metallization: Au

1.4 Chip mounting

1.4.1 Adhesive, curing temperature : Silver-filled epoxy, curing temperature < 200°C

1.4.2 Soldering: with AuSn 20, fluxless, 320°C for 30 s

1.5 Bonding procedure : Ball-TS 1.6 Bonding wire material and diameter : Au $17\mu m$ 1.7 Chip temperature during bonding : < 200°C 1.8 Tool temperature during bonding : < 200°C

1.8 Tool temperature during bonding : < 200∘C 1.9 Application : Hybrid

1.10 Chip packaging method ; Wafflepack

1.2 Absolute Maximum Ratings

 a) Chip thermal impedance is greatly affected by eutectic alloy attach methods and is approxin MMICs by measurements on discrete FETs.

b) Assumes equal current densities

1.3 Electrical Characteristics

ABSOLUTE MAX. RATINGS

T = +25 °C at heatsink

PARAMETERmin.max. V_{DS} drain source voltage0.0 7.0 V_{DS} | + | V_{GS} | 8.0 V V_{GS} gate source voltage-5.0 0.0 V_{DS} | + | V_{GS} | 8.0 V

I_{DS} Drain-Source current 774 mA I_{BD} gate-to-drain breakdown current 2.4 mA

 $\mathsf{I}_{\mathsf{Gate},\mathsf{max}}$ Maximum allowable Gate Current -35.2 mA Strongly depends on P_{RF-IN} .

P_{tot} Power dissipation 2.52 W P_{In} Input continuous wave power 27 dBm

T_M Mounting temperature 320 ∘C max. 30 sec.

T_B Bonding Temperature 200 _oC T_{STG} Storage temperature -65 150 _oC T_{CH} Operating channel temperature 150 _oC

THETA_{CH-B} Chip thermal impedance_{a).}

b) channel to backside 24 oC/W typical value

Remark:

MTTF strongly depends on V_{DS} and channel temperature. Keep V_{DS} as low as possible.

RF-CHARACTERISTICS:

- Operating frequency band: 21.5 GHz -26.5 GHz

- Input / Output Ports: $Z_0 = 50 \Omega$

- Bias Condition: Ups = 6.5 V ; Ips = 240 mA

S₁₁ Input reflection loss -5.0 dB S₂₂ Output reflection loss -5.0 dB S₂₄ Small signal gain 5.0 - 7.0 dB S₁₂ Reverse isolation -35.0 dB

PldB Output power at 1dB gain compressed 28 - 29.5 dBm

Chip Layout:Reference Planes/Ports for RF-Autoprobe

Chip Size: $(2.946 \text{mm} \pm 50 \mu \text{m}) \times (2.489 \text{mm} \pm 50 \mu \text{m}) \times (0.1 \text{mm} \pm 12 \mu \text{m})$

Fig.1

Port 1

RF Input

Port 2

RF Output

Remarks: - RF autoprobe performed using TRL calibration technique for S-parameter

- GS, SG prober with 250µm pitch are used
- DC biasing performed using DC probe cards
- Reference Planes at center of TRL thru (914.4μm)

Distance from chip edge to the Saw/Scribe Marker Ticks (see Fig. 2). The nominal value for all four sides is $d = 52.5 \mu m$.

Top:

 $d = 52.5 \mu m \pm 50 \mu m$

Bottom:

 $d = 52.5 \text{ mm} \pm 50 \mu \text{m}$

Left:

 $d = 52.5 \, \mu m \pm 25 \, \mu m$

Right:

 $d = 52.5 \text{ mm} \pm 25 \mu \text{m}$

Capacitors to be checked for shortage: As much as possible.

1) $g_{m} = (I_{DSS} - I_{DS1})/(V_{GS}(I_{DSS}) - V_{GS1}(I_{DS1}))$ for $V_{DS} = V_{DSP}$

 $V_{GS}(I_{DSS})=0V$, $V_{GS1}(I_{DS1})=-0.25V$,

IDSS=IDS(VGS=0V) for VDSP

 V_{DS} is swept between 0.5V and V_{DSP} in search of the maximum value of I_{DS} .

This maximum IDS is recorded as IDS1.

 V_{DSP} is the drain voltage resulting in maximum

I_D for V_{GS}=0V, up to a maximum of 3.5V (also the point at which I_{DSS} is recorded).

RF-Autoprobe:

- Input / Output Ports: $Z_0 = 50 \Omega$
- GS- or SG-RF-Autoprobes / 250 μm Pitch
- -T = +25 °C at heatsink
- Reference planes as defined in Fig.1
- Measurement frequencies in GHz: 21.5, 23.0, 24.5, 26.5

Bias Condition for RF- Autoprobe: U_{DS} = 6.5 V; I_{DS} = 240 mA

PARAMETER	min.	typ.	max.	Unit	Remarks
S ₁₉ Input reflection loss	**************************************	-5.0		dB	Info only
S ₂₂ Output reflection loss		-5.0	hada filik adamili filip fa faruna va e e e e e e e e e e e e e e e e e e	dB	Info only
S ₂₁ Small signal gain	5.0	7.0	P40-T0F-4-40E0-40-X44-9-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	dB	100 100 100 100 100 100 100 100 100 100
S ₁₂ Reverse isolation		-35.0	***************************************	dB	Info only
P _{1dB} Output power at 1dB gain com- pressed	28	29.5	by he first of the first of the section of the sect	dBm	***************************************
RF-Autoprobe frequency points for IMD ₃	**************************************	23.0, 26.0	HDPD MAX PP TENNELS PARTY TENNELS PROPERTY SEELING	GHz	2 Test Frequencies
IMD₃ Intermodulation product 3 rd order, f = 10 MHz	14 billiga dipubili repubire este a peres es re	36	147,555 TO VARYA E 1488 THE VARIABLE VALUE VALUE OF A 157,800,000	dBc	3 Input Power Levels
revenue					Info only
	respuisit area asses of a second of the seco		t / A dright is dail and do a page of the globar specific supplying was record		See note 1)

¹⁾ Measurements are made at 3 different input power levels. The input power levels (per tone) are calculated as followed (power levels rounded up to 0.5 dB):

$$P_{IN1} = 17dBm - Mean (S21 (dB) over the lot)$$

$$P_{\text{IN2,3}} = P_{\text{IN1}} \pm 2dB$$

1.2 Absolute Maximum Ratings

PARAMETER	min.	max.	Unit	Remarks
V _{DS} drain source voltage	0.0	7.0	V	V _{DS} + V _{GS} 8.0 V
V _{GS} gate source voltage	-5.0	0.0	V	V _{DS} + V _{GS} 8.0 V
I _{DS} Drain-Source current	AND	774	mA	
I _{BD} gate-to-drain breakdown current	**************************************	2.4	mA	TALESTYPHEN TO A COLOR TO COLOR POPULATION AND A COLOR
I _{Gate,max} Maximum allowable Gate Cur-	and the same of th	35.2	mA	Strongly depends on P _{RF-IN} .
rent				
P _{tot} Power dissipation	het a-seed how it to a deal to the hist abstract	2.52	W	1. The state of th
P _{in} input continuous wave power	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	27	dBm	TATA BERTAMBANAN BATTA BATTA BATTA BATTAN PANGHAN PANG
T _M Mounting temperature	Panega ber saling page 1700 in 1900 in	320	°C	max, 30 sec.
T _B Bonding Temperature		200	°C	
T _{STG} Storage temperature	-65	150	°C	Anderse Laws (Manuel Mapperse) of professional street declaration and the second and pages 10 p. C. preparation of the second se
T _{CH} Operating channel temperature	lvantajto potujú kan kturum mank my	150	°C	
THETA _{CH-B} Chip thermal impedan-	24	i daninku kumunan kunga ku kudinu kumbu	°C/W	typical value
ce ^{a),b)} channel to backside				

- a) Chip thermal impedance is greatly affected by eutectic alloy attach methods and is approximated for MMICs by measurements on discrete FETs.
- b) Assumes equal current densities

1.3 Electrical Characteristics

DC-Autoprobe:

- Q1,2 & Q3,4 measured for total DC-Information (V_{BDGD}, V_{BDGS}, g_m, I_{DSS}, I_{MAX}, V_P)
- -Q5 & Q6 measured for g_{m} , I_{DSS} , I_{MAX} , V_{P}

- T = +25 °C at heatsink

PARAMETER	min.	typ.	max.	Unit	Remarks
V _{BDGD} Breakdown voltage gate drain diode	-30.0	-21.0	-8.0	V	I _{BD} = 1.2mA per FET pair
V _{BDGS} Breakdown voltage gate source diode	-30.0	-21.0	-8.0	V	I _{BD} = 1.2mA per FET pair
9 _m	264	450	636	mS	per FET pair see note 1)
I _{DSS} Drain Source Current for V _{GS} =0V	7.00	Info	**************************************	mA	V _{DS} =6.5V No Sweep / Fix V _{DS}
I _{max} Maximum I _{DS}	450	612	774	rnA	Positive voltage is applied to the gate to saturate the device. V _{DS} is stepped between 0.5 V up to a maximum of 3.5 V, searching for the maximum value of I _{DS} . Values are given per FET pair.
V _P Pinch-off voltage	-1.5	-1.0	-0.5	V	V _{DS} fixed at 2.0 V, V _{GS} is swept to bring I _{DS} to 0.6mA for FET pairs Q1,2 and Q3,4 and 0.09mA for FETs Q5 and Q6

2. Electrical Features

RF-CHARACTERISTICS:

- Operating frequency band: 21.5 GHz -26.5 GHz

- Input / Output Ports: $Z_0 = 50 \Omega$

- GS- or SG-RF-Autoprobes / 250 μm Pitch

- T = +25 °C at heatsink

- Reference planes as defined in Fig.1

- Bias Condition: $U_{DS} = 6.5 \text{ V}$; $I_{DS} = 240 \text{ mA}$

PARAMETER	typ.	Unit	Remarks
S ₁₁ Input reflection loss	-5.0	dB	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
S ₂₂ Output reflection loss	-5.0	dB	AND CONTROL OF THE PARTY OF THE
S ₂₁ Small signal gain	7.0	dB	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S ₁₂ Reverse isolation	-35.0	dB	The state of the s
P _{1dB} Output power at 1dB gain com- pressed	29.5	dBm	
IMD₃ Intermodulation product 3 rd order	36	dBc	Output Power Level
			$P_{out} = 2 \times 17 \text{ dBm}, \Delta f = 10 \text{MHz}$

2.1 Marking and Packaging

Packing Devices into waffle packs:

- The dies must be packed into the waffle packs as shown in Fig.3
- 2. Packing ist started with the lowest row & column number and continued increasing first the column number until the last die in this row. After finishing the row, row number is increased by one and the dies are picked starting with the last die in the new row. After picking the first die in this row, row number is increased again by one and picking is started at the first column; and so on.
- The waffle pack is filled starting on the top left corner in the same way as the dies are picked from the wafer (see Fig. 4: Sorting dies into waffle pack).